
The pl/dotnet extension to PostgreSQL, v0.99(beta)
The pl/dotnet team

Brick Abode

Florianópolis Brazil

pldotnet@brickabode.com

ABSTRACT
pl/dotnet extends the PostgreSQL database to support stored pro-

cedures, functions, triggers, and DO blocks for the .NET platform,

including both C# and F#. In our benchmark it is the fastest Proce-

dural Language in PostgreSQL, and it has the widest range of unit

testing. It natively supports 38 out of 46 standard user types, the

widest range of any external Procedural Language in PostgreSQL.

It is released as free software under the PostgreSQL (BSD-style)

license. Our goal is to be the best Procedural Language in Post-

greSQL and the best implementation of .NET stored procedures

in any database. We here present our work for consideration and

feedback.

KEYWORDS
PostgreSQL, .NET pl/dotnet, C#, F#, stored procedures, triggers

1 INTRODUCTION
PostgreSQL is an extensible, open-sourced object-relational data-

base management system [4]. .NET (also “Dotnet”) [3] is an open-

sourced, cross-platform development framework including a JIT-

compiler, a high-performance runtime, and support (including

cross-calling) for multiple languages, including both C# (an object-

oriented dialect of C) and F# (based on Ocaml, an object-oriented

dialect of ML.)

The PostgreSQL project includes support for user-defined func-

tions, stored procedures, and triggers. These can be implemented

in a number of languages, including SQL, C, TCL, Perl, and Python

in the standard distribution [4], and Java [1], Lua [5], and R [2]

outside of the standard definition.

The pl/dotnet project extends PostgreSQL to support user func-

tions, procedures, triggers, and DO blocks for the .NET platform,

including both C# and F#. We support all Procedural Language

features. We have achieved native representation for 38 of out of 46

PostgreSQL user types, plus their arrays, the widest range of any

external Procedural Language in PostgreSQL. In our benchmarks

we are the fastest Procedural Language in PostgreSQL, though

only by a few percent.

2 MOTIVATION
Stored procedures had their moment in the sun in the late 1980s

and early 1990s for three reasons of general awesomeness:

(1) they move the code to the data instead of the data to the

code, which is faster and cheaper,

(2) they provide strong security, restricting data modification

rights of clients, and

(3) they reduce the conceptual load on the database client,

allowing pieces to be decoupled.

Stored procedures were then mostly discarded by our industry

because of the practical problems in using them:

(1) writing stored procedures in a different language and soft-

ware environment than the remainder of your codebase

adds constraints and overhead,

(2) writing stored procedures in a different team than the

remainder of your codebase adds overhead,

(3) stored procedure environments can’t manage the software

lifecycle (upgrades, etc) as well as normal software envi-

ronments, and

(4) pl/sql, the dominant language for stored procedures is, as

a technical matter, terrible and awful and very terrible.

This was a mistake. We have learned much in the past 30 years

about how to address the problems, and the benefits are even more

compelling today. Stored procedures can be great, and pl/dotnet

will prove it.

.NET is a great platform for building servers. The .NET runtime

is the best garbage-collected, multi-threaded runtime in the world,

with good scalability and the ability to run on all modern operating

systems. ASP.NET
1
is a powerful framework for building web apps.

.NET includes F#, a strongly-typed functional programming

of the ML family. Functional programming goes naturally with

relational database, which are in many ways inherently functional,

and we have full support in pl/dotnet for F# as a first-class citizen.

PostgreSQL is the world’s leading free software database, with a

beautiful MVCC architecture, total SQL support, universal support

across all major programming languages, and a strong community.

Our goal is to make pl/dotnet the best stored procedure lan-

guages for PostgreSQL and the best .NET stored procedure lan-

guage in any database. Stored procedures will once again be a

great option application builders.

3 PROJECT STATUS
As of this beta release, pl/dotnet supports all major procedural

language features:

• Languages: C# and F# both fully supported

• Datatypes: 38 out of 46 PostgreSQL user (non-system) data

types, plus their arrays, and all types are nullable

• Code can be entered directly via CREATE FUNCTION or,

alternatively, loaded from pre-compiled assemblies

• Performance in our benchmarks surpasses all other PL

implementations

• Testing: we have 1126 unit tests, covering all features in

both C# and F#

• We imported all NPGSQL unit tests to measure our com-

patibility; 37.1%of them are working, 368/991

• Security: Code for each function is isolated in a .NET As-

sembly Load Context, providing nice security protection

• Full trigger support, including modifying data where al-

lowed by SQL

1
https://dotnet.microsoft.com/en-us/apps/aspnet

1

https://dotnet.microsoft.com/en-us/apps/aspnet

The pl/dotnet team

• Full support for output parameters (OUT and INOUT), nicely
mapped to both C# and F#

• Full support for Set-Returning Functions

• Support for functions returning RECORDs and tables

• SPI support via the NPGSQL API, allowing much client

code to be ported unmodified into server code

3.1 Our special relationship with NPGSQL
Tomake stored procedures great again, code needs to be maximally

portable between the database client and the database server.
2
Any

and all differences between the programming environment in the

database client and the database server must be torn down. Ideally,

the same code should be able to execute in either context with zero

modification.

For this reason, API compatibility between the client and the

server is paramount, and this has been and remains a major source

of difficulty for developers in PostgreSQL. The problem is two-fold:

• For many languages, there is no single, canonical API

for accessing PostgreSQL. This is the case for Python,

where the major PostgreSQL APIs are the Django ORM,

SQLAlchemy, and Psycopg. pl/python is compatible with

none of them, instead exposing its own API for database

access via SPI and data type mapping.

• Even when there is a canonical API, the procedural lan-

guage environments do not use it. For example, PostgreSQL

has a JDBC client library, but pl/java implements an en-

tirely differeny JDBC API.

Dotnet has the age-old ADO.NET API, which so loosely defined

that it is more a set of conventions than an API proper. Fortunately,

however, there is a single, canonical client library for accessing

PostgreSQL from dotnet: Npgsql.
3

The presence of this universal API for PostgreSQL access in

dotnet was a strategic gift to our project, and we were determined

not to waste it. We not only adopted all of NPGSQL’s mappings

between dotnet types and PostgreSQL types; we also adopted

NPGSQL as our abstraction layer over database access via the

Server Programming Interface (SPI).
4

When I say we "adopted the API", we did not merely reim-

plement it, as pl/java did to the JDBC library; we incorporated

NPGSQL wholesale into our project. At the lowest levels of the

library, we replaced its normal socket-based communication with

the database server with direct calls to the SPI API. These modifi-

cations are very small and targeted, and they are entirely invisible

to NPGSQL users.

2
A note on terminology: when we say "database client", we typically mean the trusted,

centralized software component with privileged access to the database, which is more

often called a "server", most often a web server. If we were to call it a "server" in this

paper, then it would get confused with PostgreSQL itself, so we stick to the convention

of referring to it as the database client, which it is. Such are the terminology problems

of three-tier architectures.

3
https://www.npgsql.org/doc/types/basic.html

4
"The Server Programming Interface (SPI) gives writers of user-defined C functions

the ability to run SQL commands inside their functions or procedures. SPI is a set of

interface functions to simplify access to the parser, planner, and executor. SPI also does

some memory management." - https://www.postgresql.org/docs/current/spi.html

You can see the advantage this approach gives us in Table 1,

which compares our code size to that of other Procedural Lan-

guage implementations in PostgreSQL
56
. This approach was more

difficult for us in several ways, but it gave us nearly perfect API

compatibiltiy, the widest range of native type support, and good

performance while having such a small codebase; we are proud of

this.

Table 1: Lines of code for various PostgreSQL PL implemen-
tations

PL implementation Lines of code

pl/java 54984

pl/v8 29526

pl/pgsql 13614

pl/lua 13008

pl/python 4535

pl/r 4413

pl/dotnet 4040

pl/perl 2741

I say "nearly perfect API compatibiltiy" because there are minor

differences, forming a long tail of many small incompatibilities. The

largest category is exception mapping, where the many different

kinds of exceptions which NPGSQL throws require much work

to map precisely to our SPI usage. Of course, throwing different

exceptions is an API difference which needs to be addressed, but

it is not a major difference, and this approach already gives our

users a very high degree of compatibility.

We are confident of our ability to reach perfect compatibility

in time, because we imported NPGSQL’s entire regression test

suite into pl/dotnet as stored procedures. Once we can pass all of

these tests, then our compatibility will be at the same level which

NPGSQL itself provides between version upgrades.

The data from these regression tests has been interesting. 37.1%

of them are working, 368/991. The pattern we have observed, gen-

erally speaking, is that linear progress in the test suite corresponds

to exponential progress in feature support: 80% feature support

got us 20% test passage, 95% of feature support got us 40% test

passage, etc. (These figures are highly informal.) The test failures

are quite a thicket; we will fix a problem, and some of its failing

tests are resolved, while others of its failing tests continue failing,

but now with a new cause.

The current test passage rate indicates a high degree of com-

patibility with the calling of the API, while work remains in the

smaller details of the API mapping. We have a long road ahead of

us for the remaining unit tests, but we welcome it. This path will

get us to not only full compatibility, but strong confidence as an

engineering matter that the compatibility is precisely as strong as

NPGSQL’s own inter-version compatibility.

5
We here count code in C/C++ as well as the native language, with the exception of

plpgsql; we do not count their PL-specific SQL code, which is unusually difficult to

differentiate. Lines of code were counted using version 1.94 of the CLOC tool.
6
We also made 1916 lines of changes to our fork of the the NPGSQL package. Most of

these changes are boilerplate stemming from renaming and overriding the datatype

classes. They are strictly external to pl/dotnet, so we did not count them. If you choose

to count that way, the total is 5956 lines, bumping us up one place, past pl/python.

2

https://www.npgsql.org/doc/types/basic.html
https://www.postgresql.org/docs/current/spi.html

The pl/dotnet extension to PostgreSQL, v0.99(beta)

For this reason, only having 37.1%of the tests passing does

not concern us; we consider it a good start in a very promising

direction.

3.2 Data type support
PostgreSQL has a rich type system, with 46 user types in the main

distribution. Any mapping of these types into a programming

language is going to face choices and numerous challenges about

how to map them, especially for intricate types such as datetimes.

Our use of NPGSQL gave us a simple answer which is maximally

useful for our users.

Table 2, which LATEXhas yeeted somewhere in this document,

lists the PostgreSQL data types support by pl/dotnet, which use

exactly the same type mapping as Npgsql. (The type names are

sometimes different in F#.)

pl/dotnet supports all of the range data types in PostgreSQL.

We skipped multirange support for the time being and intend to

add it in the future.

3.2.1 Arrays and Nulls. All supported data types also support ar-

rays of that type, be they single-dimensional or multi-dimensional.

We currently do that via the Npgsql convention of mapping them

to Array<Type>, but that type mapping is cumbersome and expen-

sive compared to the somewhat different Type[] representation.

The source of this problem is an unfortunate design choice

in PostgreSQL, which tracks types according to their OID. Each
datatype has a corresponding array datatype, with its own OID, but

this OID does not encode the dimensionality of the array; thus, all

arrays in PostgreSQL may be of arbitrary dimension
7
, regardless

of which dimension they were declared with. You can see this

reflected in the PostgreSQL manual:

The syntax for CREATE TABLE allows the

exact size of arrays to be specified, for exam-

ple:

CREATE TABLE tictactoe (
squares integer[3][3]

);

However, the current implementation ig-

nores any supplied array size limits, i.e., the

behavior is the same as for arrays of unspeci-

fied length.

The current implementation does not enforce

the declared number of dimensions either.

Arrays of a particular element type are all

considered to be of the same type, regardless

of size or number of dimensions. So, declaring

the array size or number of dimensions in

CREATE TABLE is simply documentation; it

does not affect run-time behavior.

Postgresql Manual, Ch. 8.15, Arrays

7
Up to the hard limit (“MAXDIM”) of 6.

Because Npgsql cannot know the dimensionality of the arrays it

will receive in a client context, it must use an object representation

which can handle any dimensionality; this is cumbersome in devel-

opment and slow in execution. However, since we are operating

in a stored procedure context instead of a client context, we have

another option available to us.

All types in PostgreSQL are nullable by default, so our default

handling is to map parameters to the nullable type (T?) in .NET .

This is similar to a Option type in ML and F#, but sadly not the

same. To keep ourselves For PostgreSQL functions that are defined

as STRICT, the function will not be invoked with null values, so in

that case we map the type to the simpler T type. We hope to make

this behavior configurable for the developer in the future.

3.3 Parameter Modes
pl/dotnet supports all three SQL parameter modes: IN, INOUT, and
OUT.

For C#, we handle IN arguments normally. INOUT parameters

are typed as ref arguments, which maps INOUT behavior cleanly
to C#. OUT parameters are simply mapped to C#’s out.

Such handling of parameters, though idiomatic in C#, are very

out of place in functional programming languages, so in F# we

pass IN and INOUT values as input arguments, and all INOUT and
OUT values are separately returned in a tuple. Ironically, this is

how the variables are actually processed in PostgreSQL’s internal

handling, while our C# mapping matches the SQL syntax.

3.4 Function, Procedure, DO, Trigger
PostgreSQL has four modes in which code can be invoked from a

Procedural Language:

(1) As a user function (“CREATE FUNCTION”), taking parame-

ters, returning a value, but not allowing database modifi-

cations

(2) As a procedure (“CREATE PROCEDURE”), taking arguments,

not returning a value, but allowing database modifications

(3) As a “DO” block, creating a transient anonymous function

in a Procedural Language.

(4) As a trigger (“CREATE TRIGGER”), which is a function called
when certain database events happen.

pl/dotnet supports all four modes.

Our trigger support includes all trigger operations:

(1) Trigger arguments

(2) Full trigger information: event, level, table name, operation,

etc.

(3) Full copies of old and new rows

(4) Ability to modify the row, when allowed under SQL

3.5 Set-Returning Functions (SRFs) and
Records

Set-Returning Functions (SRFs) and Records are both features of

interest.

SRFs were nicely mapped to the native conventions in C# and

F#. In C#, they are mapped to enumerators:

3

https://www.postgresql.org/docs/15/arrays.html
https://github.com/postgres/postgres/blob/master/src/include/utils/array.h#L75

The pl/dotnet team

CREATE OR REPLACE FUNCTION
make_pi()
RETURNS SETOF float8 AS
$$

// In C#, this maps to:
// public static IEnumerable<double?> make_pi()
double sum = 0.0;
for(int i=0;;i++){yield return

4*(sum+=((i%2)==0?1.0:-1.0)/(2*i+1));}↩→
$$
LANGUAGE plcsharp;

In F#, they are mapped to sequences, which share the same

IEnumerable dotnet interface as C# enumerators:

CREATE OR REPLACE FUNCTION
make_pi_fsharp()
RETURNS SETOF float8 AS
$$

// In F#, this maps to:
// static member make_pi_fsharp() : seq<Nullable<double>> =
seq {

let mutable sum : float = 0.0
for i = 0 to System.Int32.MaxValue do

yield double(4.0 * sum)
sum <- sum + ((if i % 2 = 0 then 1.0 else -1.0)/

float(2.0 * float(i) + 1.0))↩→
}

$$
LANGUAGE plfsharp;

Records were another interesting feature. The nature of a record

in SQL is that it can hold any data type, so we represent it as an

array of type Object, the universal type in dotnet.

CREATE OR REPLACE FUNCTION
dynamic_record_generator_srf(lim INT8)
RETURNS SETOF record
AS $$

// In C# this maps to:
// public static IEnumerable<Object? []?>

dynamic_record_generator_srf(long? lim)↩→
if (!(lim > 0)){ yield break; }
for(long i=0;i<lim;i++){ yield return new object?[] { (long)i,

$"Number is {i}" }; }↩→
$$
LANGUAGE plcsharp;

CREATE OR REPLACE FUNCTION
dynamic_record_generator_srf_fsharp(lim INT8)
RETURNS SETOF record
AS
$$

// In F# this maps to:
// static member dynamic_record_generator_srf_fsharp (lim:

Nullable<int64>) : seq<obj[]> =↩→
match lim.HasValue with
| false ->

seq { for i in 0 .. System.Int32.MaxValue do yield [| box

i; $"Number is {i}" |] }↩→
| true ->

if not (lim.Value > 0) then
seq { () }

else
seq { for i in 0L .. lim.Value - 1L do yield [| box i;

$"Number is {i}" |] }↩→
$$
LANGUAGE plfsharp;

Architecturally, records were very interesting for us, because

they are the one case where the type is not known at compile-time.

It is a major advantage of our architecture that we resolve types

at compile-time instead of run-time, allowing us to generate code

with the minimal execution path instead of having to dynamically

dispatch the types on each call. However, with records, this was

impossible, so we also implemented the same kind of dynamic

type lookup which the traditional PLs do, but we only use it in

the dynamic case. We were even able to detect type mismatches

between what dotnet returns and what the database is expecting

and handle them.

3.6 Using Both Code and Assemblies
Traditional PostgreSQL Procedural Languages, such as pl/pgsql

and pl/python, support creating user functions by passing the code

as part of the declaration of the function.

Alternatively, PostgreSQL’s pl/java, along with the .NET (CLR)

implementations in Microsoft’s SQLServer and IBM’s DB2, sup-

port loading a function from a pre-compiled assembly (“.dll” or
“.jar”) file. PostgreSQL also allows compiled (C, rust-lang, etc.)

functions to be loaded from shared library files.

pl/dotnet supports both modes. First, here are examples of di-

rectly entering the code in both C# and F#:

CREATE OR REPLACE FUNCTION IntegerTestCS(a INT4, b SMALLINT)
RETURNS INT4 AS $$
return a+b;

$$ LANGUAGE plcsharp STRICT;

CREATE OR REPLACE FUNCTION IntegerTestFS(a INT4, b SMALLINT)
RETURNS INT4 AS $$
a+b;

$$ LANGUAGE plfsharp STRICT;

Second, here is an example of loading the function from a DLL,

which shoud work for any .NET language and is tested for C# and

F#:

CREATE OR REPLACE FUNCTION IntegerTest(a INT4)
RETURNS INT4 AS 'Sample.dll:Namespace.Class!IntegerTest'
LANGUAGE plcsharp STRICT;

PostgreSQL does have support for declaring the library from

which to load a function, but only for natively-compiled (that is, C)

functions. For other Procedural Languages, the PostgreSQL parser

currently does not pass the file location to the language handler, as

this was not an anticipated use case. For newer language handlers

like pl/dotnet and pl/java, which also support loading code from

external libraries/archives/assemblies, this would be a nice feature

for PostgreSQL to provide, and we might add it.

3.7 Platform support
3.7.1 Operating systems and CPU. pl/dotnet is primarily devel-

oped on Linux and has been fully tested on both x86 and ARM

CPUs, suggesting the absence of any obvious endianness bugs.

We also have built and tested pl/dotnet on MacOS (OSX) on ARM,

though it is of secondary priority to us.

4

The pl/dotnet extension to PostgreSQL, v0.99(beta)

Our build environment is container-based, allowing us a stable

and repeatable build environment. We build and distribute Debian

packages and Docker images.

There should be no problems getting pl/dotnet running on Win-

dows; there are few system dependencies in the code, and those

are very standard.

We welcome code contributions to add support on other Linux

distributions and on other operating systems for pl/dotnet.

3.7.2 Postgresql versions. We support PostgreSQL versions 10,

11, 12, 13, 14, and 15. Currently, all features are supported for all

PostgreSQL versions, and the only anticipated exception to that

support is multirange, which was added in PostgreSQL v14, and

which we intend to add support for soon.

3.7.3 .NET versions. We currently develop against .NET version

6. Support for other versions of .NET should also not be difficult;

this will be an area of work after our 1.0 release.

3.8 Security
pl/dotnet has reasonable security. We use separate Assembly Load

Contexts
8
for each stored procedure, which provides some level

of isolation between them: they exist in separate namespaces and

generally do not have access to each other’s code or data, or that

of the underlying system.

Thus, there is no straightforward way for stored procedures

to interfere with PostgreSQL, but it might be possible to do so

with not-straightforward paths. We could marginally improve the

security of the system by reducing the set of libraries available to

stored procedures, but even this would not be a guarantee.

Microsoft previously attempted to provide these guarantees

in dotnet with AppDomain
9
but eventually gave up and (rightly)

deprecated it. The number of potential avenues of attack are simply

too great to be able to secure with certainty unless the platform is

designed from the ground up to provide such security, and almost

no modern language runtimes were engineered in that way.

This problem is faced by every stored procedure language, and

unless the language provides air-tight guarantees as to its secu-

rity, then we think that skepticism regarding such assurances is

warranted. Few languages in existence provide such guarantees,

and we do not think that any of the current stored procedure lan-

guages qualify. Only pl/tcl even makes such a claim, and while we

respect their design, we would still probably not fully trust it for

security-critical usage.

The fundamental problem is that stored procedures execute

inside of the PostgreSQL server’s memory space, and the operating

system and CPU provide nomemory protection between the stored

procedures and the database. This is the fundamental tradeoff to

be made in order to get the increased performance which stored

procedures provide.

Even with these limitations, we think there is a security argu-

ment to be made for this approach over the traditional architecture.

In the normal use case, database clients cannot easily interfere

with PostgreSQL’s internal operation, but they have access, usually

unrestricted, to modify or delete the data as well as the schema.

8
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.loader.

assemblyloadcontext?view=net-7.0

9
https://learn.microsoft.com/en-us/dotnet/core/porting/net-framework-tech-

unavailable

We here should think about why PostgreSQL’s integrity is im-

portant. It is unusual that an attacker wishes to use one application

to subvert the server in order to access to another database, be-

cause most databases are not shared in the modern environment.

Thus, the only function which is served by PostgreSQL’s integrity

is to enforce the security restrictions on the application’s database.

In an environment where the client has unfettered read/write

access to the database, and that is the common case, the integrity

of PostgreSQL is not important, because an attacker who has sub-

verted the client already has full access.

It is generally easier to subvert the security of a client process,

for example in a public-facing web server, than it is to subvert

the security of the database or the stored procedures which it

holds. By trusting a limited set of code inside of the database,

it is possible to dramatically limit the trust one needs to extend

to the database client, which is generally larger, more exposed,

and more difficult to secure. Because the client no longer needs

unrestricted write access to the database, this change will usually

yield an improvement in overall security, often a dramatic one.

For this reason, we believe our design to offer superior security

for many classes of users.

Stored procedure authors must be the final arbiters of their

security tradeoffs. They should, as always, take care that their

code not introduce means to be subverted by malicious input. This

is easier in a memory-safe environment like .NET .

Security-critical applications do exist, and we are interested in

serving them; it is an interesting area for future work.

3.9 Code Quality
In order to improve our code quality, we have built unit tests for

all supported datatypes, their arrays, and null handling in both

C# and F#, as well as for all major functionality, such as triggers,

Set-Returning Functions, table functions, etc.

We use three static analysis tools:

(1) Cpplint
10

is a static code checker for C and C++.

(2) StyleCop
11

is a static code analysis tool. Formerly a stan-

dalone tool, it was refactored to become a series of Roslyn

plugins.

(3) SonarLint
12

is a code quality and security static analysis

tool with almost 5000 rules.

C and C# code in pl/dotnet is clean under the cpplint, StyleCop,

and SonarLint checks.

Source code in pl/dotnet, both C and C#, is documented using

Doxygen, and the generated documents are reasonably complete

in explaining the system.

Finally, we imported all of NPGSQL’s unit tests to run under

pl/dotnet, and we have several hundred of them working. The

NPGSQL unit tests failures are caused first by minor differences

in exception handling, and also by our incomplete support for

NPGSQL’s feature set. We continue to make progress in improving

our NPGSQL compatibility, but we believe that the current feature

set is very useful, and our using NPGSQL’s own tests leaves us

confident that our supported features are supported well.

10
https://github.com/cpplint/cpplint

11
https://github.com/DotNetAnalyzers/StyleCopAnalyzers

12
https://rules.sonarsource.com/csharp

5

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.loader.assemblyloadcontext?view=net-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.loader.assemblyloadcontext?view=net-7.0
https://learn.microsoft.com/en-us/dotnet/core/porting/net-framework-tech-unavailable
https://learn.microsoft.com/en-us/dotnet/core/porting/net-framework-tech-unavailable
 https://github.com/cpplint/cpplint
 https://github.com/DotNetAnalyzers/StyleCopAnalyzers
 https://rules.sonarsource.com/csharp

The pl/dotnet team

3.10 Future Features
We do not currently support dynamic database types, such as

enums, composites, domain types, and other user-defined types.

Npgsql does support them, and we intend to add them in the future,

but their handling is somewhat delicate, so we chose to ship the

first version without them. We also do not support the Numeric

type.

We plan to give developers more control over code isolation by

placing each DLL in its own AssemblyLoadContext. Thus, code

from the same DLL can share state, while functions are otherwise

isolated from each other. This will let users control data sharing

between their functions by controlling which DLLs hold their

functions.

Our automated tests cover not only C# and F#, but also numer-

ous other stored procedure languages. We hope to share these for

use by other PL teams and to facilitate cooperation across the Post-

greSQL PL community. We would like for our project to be helpful

to other PL’s in improving their implementations, and we thank

them for the help which their examples provided us in developing

this project.

4 .NET IMPLEMENTATION
4.1 Architecture
Any stored procedure language in PostgreSQL is going to have

some mix of C code and language-specific code, and there are

choices to be made in where and how you build functionality. We

liked the increased safety of working in C#, and we valued the

richer set of programming tools, so our decision was to keep the

C code to a minimum and use C# wherever possible handle the

transfer of data into and out of user functions.

This stands in contrast to some other PL implementations, and

pl/python is an interesting example. pl/python is implemented

entirely in C, and we have learned much from it. The Python C

API is very good, but it is still C. Having been built in C, pl/python

must pay careful attention to manual memory management, and

building objects is tedious. Despite our having a much wider range

of native data type support than pl/python, we only have 25% as

many lines of C code, 1123 versus 4533. Since C# is still compiled

via the .NET JIT, and the CLR must be used anyway, we do not

sacrifice much performance this way. Further, with our code gen-

eration strategy, we actually have a superior execution path to C

engines such as pl/python’s; whereas they are structured more

like an interpreter, with run time determination of the execution

path, we are able to lift such decision making to compile time and

build minimal execution paths. Our optimized execution path is

then compiled, yielding roughly equivalent and sometimes supe-

rior performance to natively-compiled code. For these reason, our

performance is superior, despite building most of our logic in a

high-level language. Keeping most handling in C# was thus a good

design decision for us.

Every piece of data in PostgreSQL is expressed in a datum, and

each datum has an Object IDentifier (“OID”) for its type. (This OID
is not in the datum at run time; it is in the type definition for

the function at compile time.) For each data type, pl/dotnet has a

pair of small C function whose purpose is to get the values out

of the datum to .NET (called InputValue()) and then back from

.NET into the datum (called OutputValue().) All of the remaining

handling is then done in C#. This also has the nice effect of keeping

both C code and unsafe C# code to a minimum; they are strictly

limited to getting data into and back out of .NET .

When a function is created, pl/dotnet creates two assemblies:

the UserHandler, and the UserFunction. The UserFunction is a

minimal wrapper around the user’s code, or in cases where the

user has loaded the function from a pre-compiled assembly, then

it is a wrapper around that assembly. The type mapping from

PostgreSQL to C# or F# is automated; the user need not bother

himself with it. The UserHandler is responsible for marshalling

values out of the database, calling the UserFunction, and then

returning the result values back into the database.

A nice feature of this architecture is that, because the User-

Handler is so cleanly separated from the UserFunction, support

for pre-compiled DLLs was straightforward. Further, it makes F#

support easy, because we can reuse the C# implementation of the

UserHandler and need only compile the UserFunction in F#, which

is then easily callable from C#.
13

When a function is called from PostgreSQL, C builds an array

of datums
14

with the function arguments and passes them to C#.

C# knows the type of each argument at compile time, and it calls

the precise handlers for each type to convert it from a PostgreSQL

datum to a .NET value, without any run-time overhead. The C#

handler handles NULLs and arrays with code that is nicely generic.

After those values have been passed to the user function, the

return value from the user function then follows the reverse path

through the type handlers to create a PostgreSQL result datum,

which is then returned to the database.

4.2 Compilation and caching
Both C# and F# make use of a template source file which is then

customized to create the source code for each user function. Users

can optionally inspect the generated code.

pl/dotnet uses the the .NET Compiler Platform SDK, aka

Roslyn
1516

, which is a set of compiler tools to compile C# to an

in-memory assembly. Roslyn exposes the entire compiler pipeline

to the application, providing us various features when compiling

user functions, including:

• extensive code checking

• informative errormessages, including correct line numbers

• ability to rewrite the code in the AST if needed

• code inspection, including metadata

• fine-grined control over library availability

We formerly used F# Compiler Services (“FCS”)
17

in a similar

way to dynamically compile F# user functions into an assembly, but

compatibility problems forced us to switch to external compilation,

which is slower at CREATE FUNCTION time.

These facilities give us many tools for improving the developer

experience and have been essential to features such as detailed

error messages and proper line numbering.

13
The details of this handling are still evolving for F#, because of the differences

between F# Compiler Services and Roslyn.

14
We here refer to the plural of a PostgreSQL type “Datum” as “Datums” in order to

technically differentiate them from the more generic term “Data”.

15
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/

16
https://github.com/dotnet/roslyn

17
https://fsharp.github.io/fsharp-compiler-docs/fcs/

6

https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/
https://github.com/dotnet/roslyn
https://fsharp.github.io/fsharp-compiler-docs/fcs/

The pl/dotnet extension to PostgreSQL, v0.99(beta)

The generated code is then compiled into in-memory assem-

blies. If a pre-compiled assembly/DLL has been used, then that is

loaded alongside the generated UserHandler. For F#, we support

doing this with both dynamic assemblies and normal assemblies.

These assemblies are loaded into an Assembly Load Context, which

provides limited isolation of one function from another and also

from the core system.

The resulting assembly context is then cached for reuse on

subsequent calls. If the function has been dropped from the cache,

either by a cache replacement or by a database restart, then we

will transparently re-compile and the function the next time that

it is called, again caching the result.

4.3 Strings
pl/dotnet currently assumes that all PostgreSQL strings are en-

coded in utf8, which is a superset of ASCII. PostgreSQL supports

other character encodings, and we could extend our support for

them, but utf8 is the de facto standard today, so alternative encod-

ings are mostly of historical interest, making this functionality not

urgent.

.NET spans let you create an object from only a pointer and

a length, leaving the contents where they lie rather than requir-

ing that they be copied.
18

Strings in pl/dotnet are handled via a

ReadOnlySpan, which is an inexpensive and nice interface.

4.4 Applying PL/DOTNET with C#
We present a sample function to show the different parts of the

systemworking together.We use Int16 and Int32 as simple example

types, letting us concentrate on the control flow rather than the

complexity of the type conversion. Some of the minor details have

been simplified for presentation.

First is the SQL definition of the function; this is how the user

will create the function in PostgreSQL.

CREATE OR REPLACE FUNCTION IntegerTest(a INTEGER, b SMALLINT)
RETURNS INTEGER AS $$

return a+b; // this is the user code
$$ LANGUAGE plcsharp STRICT;

Program code 1: How to define a function

Figure 2 is a UML sequence diagram explaining the relative calls

between PostgreSQL, the C portion of pl/dotnet, the C# portion of

pl/dotnet, and the user-supplied function.

Program Code 2 is the generated C# code. Datum, which is

handled as a void* in C, is handled as an IntPtr in C#.

18
https://learn.microsoft.com/en-us/dotnet/standard/memory-and-spans/

namespace PlDotNET.UserSpace {
public static class UserFunction {
public static int? integertest(int a, short b) {

#line 1
return a + b; // this is the user code

}
}
public static class UserHandler {
public static IntHandler IntHandlerObj = new IntHandler();
public static ShortHandler ShortHandlerObj = new ShortHandler();
public static unsafe void CallUserFunction(List<IntPtr>

arguments, IntPtr output, bool[] isnull) {↩→
var argument_0 = IntHandlerObj.InputValue(arguments[0]);
var argument_1 = ShortHandlerObj.InputValue(arguments[1]);
var result = PlDotNET.UserSpace.UserFunction.integertest(

(int)argument_0, (short)argument_1);↩→
var resultDatum = IntHandlerObj.OutputNullableValue(result);
OutputResult.SetDatumResult(resultDatum, result == null,

output);↩→
}

}
}

Program code 2: Generated C# code

Program Code 3 is the generic conversion code, which handles

NULLs and wraps the type-specific conversion code.

public abstract class StructTypeHandler<T> : BaseTypeHandler<T>

where T : struct {↩→
public T? InputNullableValue(IntPtr datum, bool isnull) {
return isnull ? null : this.InputValue(datum);

}
public IntPtr OutputNullableValue(T? value) {
return value == null ? IntHandler.pldotnet_CreateDatumInt32(0) :

this.OutputValue((T)value);↩→
}

}

Program code 3: Generic conversion code

Program Code 4 is the relevant integer-specific conversion code.

public class IntHandler : StructTypeHandler<int> {
[DllImport("@PKG_LIBDIR/pldotnet.so")]
public static extern int pldotnet_GetInt32(IntPtr datum);
[DllImport("@PKG_LIBDIR/pldotnet.so")]
public static extern IntPtr pldotnet_CreateDatumInt32(int value);

public override int InputValue(IntPtr datum) {
return pldotnet_GetInt32(datum);

}
public override IntPtr OutputValue(int value) {
return pldotnet_CreateDatumInt32(value);

}
}

Program code 4: Main integer-specific conversion code

Program Code 5 is the C code, which uses the relevant Post-

greSQL macros (etc) for Datum conversion.

7

https://learn.microsoft.com/en-us/dotnet/standard/memory-and-spans/

The pl/dotnet team

Figure 2: Figure 2: pl/csharp Sequence Diagram

int32_t pldotnet_GetInt32(void *datum) {
return DatumGetInt32((Datum)datum);;

}
Datum pldotnet_CreateDatumInt32(int32_t value) {
return Int32GetDatum(value);

}

Program code 5: C code with PostgreSQL macros

As you can see, the minimum of processing is done in

C, and everything else is handled in C#. For this reason,

each datatype has a pair of C handlers (input and output) in

“src/pldotnet_conversions.c” and a corresponding pair of C#

wrappers in “dotnet_src/TypeHandlers/”.

5 RESULTS AND ANALYSES
In addition to our own tests for pl/dotnet, we have built auto-

mated testing for over a hundred features across a range of other

PostgreSQL Procedural Languages:

We intend to assemble these tests into a unified suite which can

be used by the entire PostgreSQL PL community. We hope that this

can help us all improve performance, improve cooperation across

the PL space, and help us work together to drive improvement in

PostgreSQL to support the PL implementations.

5.1 Performance
We used these tests for benchmarking pl/dotnet and the other

Procedural Languages. We present these results here.

It is important first to say that these benchmarks were not de-

signed to fairly (or unfairly) evaluate the performance of other

languages. Rather, they were intended to help us explore other

languages’ handling of PostgreSQL datatypes, understand pl/dot-

net’s performance, and find our own problems. They cover a wide

range of stored procedure types and functionality, but they are not

intended (and probablly cannot be) representative of the actual

performance experienced by users, which will of course depend on

the particular features which they use. We merely built the tests

we needed for comparison, ran them, and benchmarked pl/dotnet’s

performance against them.

Further, these tests are designed measure the overhead of the PL

engine itself. Of course, the performance of JIT-compiled platforms

like Java and .NET will be significantly higher than interpreted

languages like python and tcl; these benchmarks are not intended

to measure such runtime differences.

We wrote the benchmarks at the beginning of the project, and

the only modification which we made was to reduce the Fibonacci

test, because it was making pl/dotnet look too good, destroying

the visibility in our heatmap. (pl/fsharp dominated this test, which

is unsurprising and also made us smile, but we shrank it anyway.)

To compute total performance, we equally weighted each test

and compared pl/dotnet against the other PL in question.

Under these tests, pl/csharp is the fastest PL, and pl/fsharp is

a close second. pl/pgsql is third. Performance among the top five

languages is comparable; we do not massively outperform the

other languages.

First, a summary:

Figure 3 shows the graphs of the relative performance of each

language. Figure 4 is the more detailed heatmap showing relative

performance for each test.

It is worth noting that, in actual usage, we expect pl/dotnet to be

significantly faster than the interpreted languages such as pl/pgsql

8

The pl/dotnet extension to PostgreSQL, v0.99(beta)

Figure 3: Performance graphs for pl/csharp compared to other PostgreSQL Procedural Languages

because of the superiority of the dotnet runtime. We might add

performance tests to show this at a later date.

In the final stages of our project, we did some minor optimiza-

tions of our code base, specifically on arrays and string processing,

and these benchmarks were helpful to us in focusing our efforts

on optimizations that would be important.

5.2 Type support
We consider 46 PostgreSQL types to be non-system types, intended

for users. Of these, we support 38 for them, and we have a clear

roadmap to support all 46 .

Numerous of the PL implementations for scripting languages,

such as pl/python and pl/tcl, achieve type support by passing the

PostgreSQL string representation to their functions for most or all

data types. This nominally achieves full type support, but at the

cost of pushing ambiguity and processing work onto the developer,

as well as significant run-time overhead. We do not consider this

to be “native” support.

pl/dotnet and pl/java map PostgreSQL values into their plat-

form’s corresonding native type, with a rich set of operators for

each one. Here, we were greatly aided by the existence of Npgsql,

which already has extensive mapping of the PostgreSQL type sys-

tem to the .NET type system. Leveraging their work, we are able

to have the greatest range of native type support of any external

Procedural Language in PostgreSQL.

We still have four gaps in our type coverage: the Numeric type;

composite and table types; enumerated types (“ENUM”); and multi-

range support for all five range types. (Multirange will be a single,

generic implementation.)

We indend to add all of these, which would make us the first

external Procedural Language with 100% native support of all

PostgreSQL user types.

9

The pl/dotnet team

Figure 4: Performance heatmap for all PostgreSQL Procedural Languages

10

The pl/dotnet extension to PostgreSQL, v0.99(beta)

Table 2: pl/dotnet support types.

PostgreSQL pl/dotnet

BIT BitArray
BOOL bool
BOX NpgsqlBox
BPCHAR string
BYTEA byte[]
CIDR IPAddress Address, int Netmask
CIRCLE NpgsqlCircle
DATE DateOnly
FLOAT4 float
FLOAT8 double
INET IPAddress Address, int Netmask
INT2 short
INT4 int
INT8 long
INTERVAL NpgsqlInterval
JSON string
LINE NpgsqlLine
LSEG NpgsqlLSeg
MACADDR PhysicalAddress
MACADDR8 PhysicalAddress
MONEY decimal
PATH NpgsqlPath
POINT NpgsqlPoint
POLYGON NpgsqlPolygon
TEXT string
TIME TimeOnly
TIMESTAMP DateTime
TIMESTAMPTZ DateTime
TIMETZ DateTimeOffset
UUID Guid
VARBIT BitArray
VARCHAR string
XML string

Ranges

DATERANGE NpgsqlRange<DateOnly>
INT4RANGE NpgsqlRange<int>
INT8RANGE NpgsqlRange<long>
TSRANGE NpgsqlRange<DateTime>
TSTZRANGE NpgsqlRange<DateTime>

Table 3: Tests we wrote for other PSQL Procedural Lan-
guages.

language # tests

pl/java 115

pl/lua 102

pl/perl 110

pl/pgsql 109

pl/python 118

pl/r 105

pl/tcl 108

pl/v8(javascript) 109

Table 4: Comparison of the execution time in relation to
pl/csharp.

Programming Language Execution time

pl/csharp 97.87%

pl/fsharp 98.38%

pl/pgsql 100.00%

pl/perl 102.54%

pl/python 103.42%

pl/tcl 119.64%

pl/lua 123.27%

pl/java 128.06%

pl/v8 134.88%

pl/r 158.75%

6 FUTUREWORK
Work remains after our v1.0 release:

• Datatypes: eight types need to be added: multirange (of

which there are five), enumerated, numeric, and composite

• Datatypes: several external PostgreSQL plugins add inter-

esting datatypes, including PostGIS and hstore

• NPGSQL compatiblity will continue improving: improving

exception mapping, adding minor SPI features such as

subtransactions and notifications, etc.

• More extensive security protections

• More fine-grained control over the runtime environment

• We plan to integrate pl/dotnet more fully with Entity

Framework and other parts of the dotnet ecosystem to

make development and versionmanagement of code across

the database boundary seamless and easy

7 CONCLUSION
We believe that modern tooling can make stored procedures amaz-

ing and return them to the toolbox of software engineers. With

pl/dotnet being the fastest and best-tested PL in PostgreSQL, with

the only 100compatible database API, the groundwork is in place

for us to make this dream into a reality.

We thank the authors of .NET , PostgreSQL, and Npgsql for

their work, without which this project would not be possible.

11

The pl/dotnet team

REFERENCES
[1] Tada AB. 2023. PL/Java: stored procedures, triggers, and functions for PostgreSQL.

https://tada.github.io/pljava/

[2] Joseph E. Conway. 2023. PL/R - R Procedural Language for PostgreSQL. https:

//github.com/postgres-plr/plr

[3] Microsoft. 2023. What is .Net? https://dotnet.microsoft.com/en-us/learn/dotnet/

what-is-dotnet

[4] PostgreSQL. 2022. PostgreSQL 15 - Documentation. https://www.postgresql.org/

docs/15/intro-whatis.html

[5] RhodiumToad. 2023. pllua: Embeds Lua into PostgreSQL as a procedural language
module. https://github.com/pllua/pllua

Contents

Abstract 1

1 Introduction 1

2 Motivation 1

3 Project status 1

3.1 Our special relationship with NPGSQL 2

3.2 Data type support 3

3.3 Parameter Modes 3

3.4 Function, Procedure, DO, Trigger 3

3.5 Set-Returning Functions (SRFs) and Records 3

3.6 Using Both Code and Assemblies 4

3.7 Platform support 4

3.8 Security 5

3.9 Code Quality 5

3.10 Future Features 6

4 .NET implementation 6

4.1 Architecture 6

4.2 Compilation and caching 6

4.3 Strings 7

4.4 Applying PL/DOTNET with C# 7

5 Results and Analyses 8

5.1 Performance 8

5.2 Type support 9

6 Future Work 11

7 Conclusion 11

References 12

Contents 12

12

https://tada.github.io/pljava/
https://github.com/postgres-plr/plr
https://github.com/postgres-plr/plr
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet
https://www.postgresql.org/docs/15/intro-whatis.html
https://www.postgresql.org/docs/15/intro-whatis.html
https://github.com/pllua/pllua

	Abstract
	1 Introduction
	2 Motivation
	3 Project status
	3.1 Our special relationship with NPGSQL
	3.2 Data type support
	3.3 Parameter Modes
	3.4 Function, Procedure, DO, Trigger
	3.5 Set-Returning Functions (SRFs) and Records
	3.6 Using Both Code and Assemblies
	3.7 Platform support
	3.8 Security
	3.9 Code Quality
	3.10 Future Features

	4 .NET implementation
	4.1 Architecture
	4.2 Compilation and caching
	4.3 Strings
	4.4 Applying PL/DOTNET with C#

	5 Results and Analyses
	5.1 Performance
	5.2 Type support

	6 Future Work
	7 Conclusion
	References
	Contents

